
MULTI-VALUED CONTRACTION MAPPINGS 
IN GENERALIZED METRIC SPACES 

BY 

H. COVITZ AND S. B. NADLER, JR. 

ABSTRACT 

Several fixed point theorems for multi-valued global and local contraction 
mappings are proved. These results concerning contractions are then applied 
to obtain a fixed point theorem for a certain type of single-valued locally 
expansive mapping. 

1. Introduction. The purpose of this paper is to prove a general fixed point 

theorem for multi-valued contraction mappings which is used to put the results 

in [7] in a more general and suitable setting. This enables us to answer (see Cor- 

ollary 4 below), in more generality than was asked for, a question pcsed at 

the end of section 3 of [7] and to extend significantly theorem 7 in [7] concerning 

the existence of fixed points of locally expansive mappings (see Theorem 2 below). 

The main theorem of this paper, Theorem 1, is a result about local contractions 

and is used to obtain results about global contractions. This is a somewhat different 

approach than that taken in [2]. In [2] the same iterative type of proof had to 

be redone for each of  the theorems. Our approach in this paper has the feature 

that only Theorem 1 is proved with an iterative method; the other results, though 

they are about iterates of  functions, are obtained from Theorem 1 as corollaries 

with " sof t "  proofs. We remark that theorems 5 and 6 of  [7] can be proved 

in the general setting of Corollaries 3 and 4 of this paper in a direct fashion. 

However, since Theorem 1 below is a unifying tool which simultaneously extends 

results in [1], [2], and [5] as well as results in [7], we have chosen to obtain 

our results using Theorem 1 below. 

2. Basic concepts. A generalized metric space (see [5], p. 541) is a pair 

(X,d) where X is a (nonempty) set and d: X × X ~ [ 0 ,  oo] satisfies all the prop- 

erties of being a metric for X except that d may have "infinite values". A general- 
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ized metric space (X,d) is said to be complete iff every d-Cauchy sequence in X 
x co (i.e., { ,}, = 1 is a d-Cauchy sequence in X iff lim . . . .  o~ d(x,,, x,,) = 0) is d-con- 

vergent to a point in X .  We remark that a generalized metric space can be "re- 

metrized" with a genuine metric by taking the minimum of the generalized metric 

and the real number one. The "remetr izat ion" preserves the topology but changes 

the Lipschitz structure of the space. Since we shall be dealing with contraction 

mappings in this paper, the generalized metric space structure cannot be rep- 

laced by ametric space structure. 

If (X, d) is a generalized metric space, then 

(a) CL(X) = {C 1 C is a nonempty closed subset of X},  

(b) N(e, C) = {x ~ X I d(x. c) < e for some c ~ C} if e > 0 and C ~ CL(X), and 

jinf{e > 0[A c N(e,B) and B c N(e,A}, if the infimum exists (c) H(A,B) 
too , otherwise 

if A, B ~ CL(X). 
The pair (CL(X), H) is a generalized metric space and H is called the generalized 

Hausdorff distance induced by d (in general H depends on d but we shall not 

notate this except where confusion may arise). A function F: X ~ CL(X) is called 

a multi-valued contraction mapping (abbreviated m.v.c.m) iff there exists a 

fixed real number 2 < 1 such that H(F(x),F(y)) < 2. d(x,y) for all x , y e X  such 

that d(x,y) < oo. A function F : X  ~ CL(X) is called an (e,2)-uniformly locally 

contractive multi-valued mapping (where e > 0 and 0 < 2 < 1) iffH(F(x),F(y)) < 

2" d(x,y) for all x , y ~ X  such that d(x ,y )<  e. This definition is an extension 

of  Edelstein's definition for single-valued uniformly locally contractive mappings. 

The notion of  a multi-valued contraction mapping does not seem to have ap- 

peared prior to the announcement in [6]. 

Let (X, d) be a generalized metric space, let Xo ~ X ,  and let F: X ~ CL(X) be 
x oo a function. A sequence { ~}i = 1 of  points of X is said to be an iterative sequence 

o f F  at Xo i f fx ieF(xi -1)  for each i = 1,2, . . - .  

A point p ~ X  is afixed point of a function F:X ~ CL(X) iff p~F(p) .  

3. Fixed point theorems. 

TnEOREra 1. Let (X,d)  be a generalized complete metric space and let 

x o e X .  I f  F: X ~ CL(X) is an (e,~.)-uniformly locally contractive multi-valued 

mapping, then the following alternative holds: either 

(1.1) for each iterative sequence {xi}i~ 1 of F at Xo, d(xi_l,x~) >= e for each 

i =  1,2,- . - ,  or 



Vol. 8, 1 9 7 0  MULTI-VALUED CONTRACTION MAPPINGS 7 

oo X co (1.2) there exists an iterative sequence {xi)~= ~ of F at Xo such that { g}~=~ 

converges to a fixed point of F .  

PROOF• Suppose (1 .1 )does  not hold. Then there is a choice (*) of 

xl ~ F(xo), x2 ~ F(x15,"",  and x~¢ ~ F(xN_ 1) such that d(xN_ 1, xN) < e for some 

fixed integer N >_ 1. This implies H(F(xN_lS,F(XN)) < 2" d(xN-l,xN) < 2" e. 

Therefore, since xN6F(xs_~) ,  there exists xN+~F(x~¢) such that 

d(XN,XN+I) < ~." e (<  ~). Now H(F(xN) , F(xN+I)) < 2" d(XN, XN+ 0 < 22. e and 

hence, since xN+ ~ ~ F(xN), there exists x~¢+ 2 ~ F(x~+ 2) such that d(xN+ ~, xN+ 2) 
• X co < 22 e. Continuing in this fashion we produce a sequence { N+~}~=I of points 

of X such that xn+~+~F(x~¢+~) and d(xN+~,x~+~+O<2 ~+~.e for all i>__ 1. 
X oo It follows that the sequence { ,}i = ~ is a Cauchy sequence which, by the complete- 

ness of (X,d) ,  converges to some point p ~ X .  Hence, the sequence {F(xiS~i~ 

converges to F(p) and, since xi+l ~F(x~) for all i and F(p) is closed, p~F(p) .  

This proves F has a fixed point• Furthermore, the sequence {x~}~ satisfies the 

conditions in (1•2) of the alternative. 

COROLLARY 1. Let (X,d)  be a generalized complete metric space and let 

x o e X .  I f  F : X  ~ CL(X) is a m.v.c.m., then the following alternative holds: 

either 

(1) for each iterative sequence {x~}~ 1 of F at Xo, d(x~-l,xi) = oo for each 

i = 1,2, . . . ,  

o r  

(2) there exists an iterative sequence {x},~j  of F at Xo such that { x } ~  

converges to a fixed point of F .  

PROOf. Suppose (1) does not hold. Then there is an iterative sequence 

{x )oo__ x of F at xo such that d(xN_ ~,XN) < oO for some fixed integer N >- 1. Let 

e < oo be given such that d(xN-2, xN) < e. Clearly F is an (e, 2)-uniformly locally 

contractive multi-valued mapping which, since (1.1) of Theorem 1 is violated 

by the iterative sequence above, must satisfy (1.2) of Theorem 1. But this is (2) 

of the alternative in this corollary. 

We say that a generalized metric space (X,d)  is e-chainable (where e > 0 is 

a fixed real number) iff given x, y ~ X such that d(x, y) < o~ there is an e-chain 

from x to y (that is, a finite set of points Zo = x ,  z~ . .- ,z,  = y such that 

d(z~_~,z~) < e for all i = 1,2, . . . ,n) .  The proof of the next theorem is similar 
to the proof  of theorem 6 of 1-7] (compare with the remark at the end of section 3 

or" [7]5. 
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COROLLARY 2. Let (X,d) be a complete e-chainable generalized metric space 

and let x o e X .  I f  F :x--*CL(X) is an (e,2)-uniformly locally contractive 

multi-valued mapping, then the following alternative holds: either 

(1) for each iterative sequence {x}i~ 1 of F at Xo, d(Xi_l,X i) = oo for each 

i =  1,2, . . .  ; 

o r  

(2) there exists an iterative sequence {xi}i~ 1 of F at Xo such that {xi}i~ 1 

converges to a fixed point of F. 

PROOF. We define a new generalized metric d a : X x X ~ [ 0 ,  oo] by 

da(x,y) = inf{ ~,~=ld(zi_l,zi)lZo = x,  zl, ...,z, = y is an e-chain from x to y} 

i fd(x,y)  < c~ and d,(x,y) = oo if d(x,y) = 0o. It is easy to verify that (X, da) is 

a generalized complete metric space. Let H ,  be the generalized Hausdorfl metric 

on CL(X) obtained from da (note that, since d(x, y) < e implies da(x, y) = d(x, y), 

CL(X) with respect to d is the same set as CL(X) with respect to d~). We now 

show that F is a m.v.c.m, with respect to d, and H , .  First note that if A, B e CL(X) 

and H(A, B) < e, then Ha(A, B) = H(A,B) (where H is the generalized Hausdorff 

metric obtained from d). Now let x, y e X  such that d(x , y )<  oe. Let 

Zo = x, z l , ' . . , z ,  = y be an e-chain from x to y .  Then 

i.e., 

na(F(x),F(y)) <= ~ Ha(F(zi-1),F(z~)) = ~ H(F(z,-1,F(z,)) < 
i=1 i = I  

2"d(zi_x,zi) = 2" ~, (zi-x,zi), 
i=i : = I  

Ha(F(x), F(y)) < 2" ~ d(z~_l,zi). 
i = l  

Since zo = x, zl , . . . , z ,  = y was an arbitrary e-chain from x to y ,  it follows 

that Ha(F(x),F(y) < 2da(x,y). This proves F is a m.v.c.m, with resl:cCt to da 

and Ha. Now, since da is equivalent to d ,  Corollary 1 may be applied to complete 

the proof  of  this corollary. 

The next corollary follows immediately from Corollary 1 above and extends 

theorem 5 of  ]-7]. In particular, theorem 5 of [7] required that the multi-valued 

contraction mapping map into C B ( X ) =  {CIC is a nonempty, closed, and 

bounded subset of  X}. The boundedness restrictien was i~l:csed so that the 
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hyperspace was a genuine metric space. It is not necessary that the hyperspace 

be metric and, in fact, the boundedness of point images was not used in the 

proof of theorem 5 of [7]. 

COROLLARY 3. Let (X,d) be a complete metric space and let x o ~ X .  I f  
X oo F:X  ~ CL(X) is a m.v.c.m., then there exists an iterative sequence { i}i=1 of 

F at x o such that {xl}i~l converges to a fixed point of F. 

The following corollary is an immediate consequence of Corollary 2 above. 

It is a substantial extension of theorem 6 of [7] which states that an (e,).)-uni- 

formly locally contractive multi-valued mapping F on a complete e-chainable 

metric space has a fixed point if each point image F(x) is nonempty and compact. 

COROLLARY 4. Let (X,d) be a complete e-chainable metric space and let 

x o ~ X .  I f  F: X ~ CL(X) is an (e, 2)-uniformly locally contractive multi-valued 

mapping, then there exists an iterative sequence {xi)~= 1 of F at Xo such that 

{xi}i~ l converges to a fixed point of F. 

Let (X,d) be a metric space. A single-valued mappingfis  said to be (e,2)-uni- 

formly locally expansive (where e > 0 and 2 > 1) provided that, if x and y are 

in the domain o f f  and d(x, y) < e, then d(f(x), [(y)) > 2" d(x, y). 

Theorem 6 of [7] was used to obtain, via the inverse function, fixed point 

theorems for uniformly locally expansive single-valued ~appings which are not 

necessarily one-to-one (see theorem 7 of [7]). These results corrected and ex- 

tended a result of Edelstein [3]. However, due to the compactness requirement 

on point images in theorem 6 of [7], a compactness requirement was needed on 

the inverse images of points in theorem 7 of [7]. Corollary 4 above enables us 

to eliminate this compactness requirement and prove the following extension 

of theorem 7 of [7]. 

THEOREM 2. Let (X,d) be a complete e-chainable (respectively, well-chained) 

metric space, let A be a nonempty subset of X ,  and let f :A  ~ X be an (e,2)-uni- 

formly locally expansive (continuous) mapping of A onto X .  I f  f - l (x)  is closed 

in X for each x ~ X  and f _ l :  X -~ CL(X) is e-nonexpansive (respectively, uni- 

formly e-continuous), then f has a fixed point. 

To see that some metric type of restriction even stronger than uniform con- 

tinuity must be placed on f - l ,  the reader is referred to example 3 of [7]. 

Theorem 2 above makes theorem 8 of [7] superfluous (see the remark at the 

end of section 3 of [7]). 

4. Remarks 1. In the proof of Theorem 1 we continued the finite choice (*) 
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and produced an iterative sequence not satisfyng (1.1) which, because of the 

method by which it was chosen, satisfied (1.2). In general, an arbitrary iterative 
X oo sequence { i}i=1 not satisfying (1.1) may not converge (much less satisfy (1.2)). 

As an illustration of this let (X, d) be the generalized metric space consisting of 

a two element set X = {a,b} and the "generalized distance function" d given 

by d(a, b) = oe = d(b, a) and d(a, a) = 0 = d(b, b). Define F: X ~ CL(X) by F(x) = X 

for each x ~ X .  Let X o a The iterative sequence oo = . {x,},=1, where xl = a ,  

x2 = b, x3 = a ,  x~ = b , . . . ,  does not satisfy (1.1) because d(xo,xl) = 0 (since 

F is a constant mapping, e may be taken as any strictly positive real number) 

and clearly does not satisfy (1.2). I f f  is a single-valued mapping satisfying the 

hypotheses of any of the results above then, since the one-element sets are iso- 

metrically embedded in CL(X),  the set-valued mapping F(x) = {f(x)} for all 

x ~ X also satisfies these hypotheses. In this case the alternative statements no 

longer involve "choices",  but they are concerned with the unique iterative sequence 

(in set brackets) o f f  at x0. From these observations it follows that each result 

in this section gives directly the corresponding result for single-valued mappings. 

Thus, for example, Theorem 1 above gives the theorem in section 3 of [2], Cor- 

ollary 3 gives the contraction mapping principle of Banach [1], etc. 

2. The results in section 3 are closely related in that one can be obtained from 

the other. The technique for obtaining multi-valued theorems for generalized 

metric spaces by using multi-valued theorems for metric spaces is especially 

interesting. A method for doing this for single-valued mappirgs was suggested 

and carried out by Jung in [4]. We indicate briefly how to extend Jung's technique 

to the multi-valued case by sketching a proof of Corollary 1 of the previous 

section from Corollary 3 of the previous section. Let us assume Corollary 3. 

Suppose (1) of Corollary 1 does not hold and let x 1 ~ F(xo), x2~ F(xl), . . . ,xn ~ F(x N_ l) 

be a choice such that d(x~- l , xN)< m for some fixed integer N > 1. Let 

[x~] = { x e X I d ( x , x ~ ) <  oe}. Since ( X , d ) i s  a generalized cemplete metric 

space, [xN] is a complete metric space [4]. However, F may not reap [xN] into 

CL([xN]). Define G on [xN] by G(x) = F(x) r3 [xN] for each x ~ [xN]. It can 

be shown that G(x) ~ c~ for each x ~ [XN] and, hence, that G is a function from 

[xs] into CL([xN]). Also, though in general the intersection of a multi-valued 

contraction mapping with a fixed set may not be continuous (even if the inter- 

section is nonempty), it can be shown that G is a multi-valued contraction mapping. 

This essentially follows from the fact that F is a m.v.c.m, and the points of 
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X - [xN] are inf ini te ly  far  f rom the po in t s  o f  [xN].  We m a y  now a p p l y  Coro l -  

lary  3 to  G and ,  since G(x) c F(x)  for  al l  x s X ,  the result  fol lows for  F .  
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